# Matplotlib compatibility patch for Pyodide
import matplotlib
if not hasattr(matplotlib.RcParams, "_get"):
matplotlib.RcParams._get = dict.get
Exam Tuesday December 10th#
Today you’ll make the second exam assignment covering Statically indeterminate structures including its prerequisites and/or the first exam assignment covering Continuum mechanics including its prerequisites. For more information about the exam see the assessment information in course information
Exam assignment 2 Statically indeterminate structures#
Your own submission and its grading will be available on exam assignment Statically indeterminate structures 2 after the exam.
Given is the following structure:
Calculate the displacement of \(\rm{E}\) and the moments in all the members using a force-, displacement- or hybrid- (‘hoekveranderingsvergelijkingen’ with moveable nodes) method.
Solution
Convert the structure into a statically determinate structure with a displacement or force condition.
For example when using the force method:
Using forget-me-nots, this gives a rotation of \(\rm{B}\) of: \(\varphi_B = \cfrac{5 \cdot \left(- 4 \cdot A_v + 2.5 \cdot 64 - 4 \cdot 65\right)}{3 \cdot \cfrac{100}{3} \cdot 10^{3}} = - 2.0 \cdot 10^{-4} A_{v} - 5.0 \cdot 10^{-3} \left(↺\right)\)
Again using forget-me-nots, this give a vertical displacement in \(\rm{A}\) of: \(w_{v,A} = \varphi_B \cdot 5 - \cfrac{A_v \cdot \cfrac{4}{5} \cdot 5 ^ 3}{3 \cdot \cfrac{100}{3} \cdot 10^{3}} + \cfrac{F \cdot 2.5 ^ 3}{3 \cdot \cfrac{100}{3} \cdot 10^{3}} + \cfrac{F \cdot 2.5 ^ 2}{2 \cdot \cfrac{100}{3} \cdot 10^{3}} \cdot 2.5 = -2.0 \cdot 10^{-3} \cdot A_v \)
Using \(w_{v,A} = 0\) gives \(A_v = = 0 \ \rm{ kN}\)
Again using forget-me-nots for both rotation of \(\rm{B}\), bending of \(\rm{BE}\) and bending of \(\rm{CD}\) a displacement of \(8.9518 \cdot 10^{-2} \ \rm{ m}\) is found.
The bending moment diagram results in:
Exam assignment 1 Continuum mechanics#
Your own submission and its grading will be available on exam assignment Continuum mechanics 1 after the exam.
Given is the following structure:
Find the stresses alongside all edges of the shown element from cross-section \(\rm{A}\) point \(\rm{C}\), and determine the required yield stress according to the Von Mises failure criterium.
Solution
In \(\rm{C}\) the shear stress due to bending is \(0\).
The normal stress due to bending is: \(\sigma = \cfrac{4 \cdot 4000 \cdot \cfrac{1}{2} \cdot \cfrac{0.250}{\sqrt{\pi}}}{\pi \cdot \left(\cfrac{1}{2} \cdot \cfrac{0.250}{\sqrt{\pi}}\right)^3 \cdot 0.010} = 102.4 \cdot 10^{6} \ \rm{ Pa}\). Which is a tension stress.
The shear stress due to torsion is: \(\tau = \cfrac{12000 \cdot \cfrac{1}{2} \cdot \cfrac{0.250}{\sqrt{\pi}}}{2 \cdot \pi \cdot \left(\cfrac{1}{2} \cdot \cfrac{0.250}{\sqrt{\pi}}\right)^3 \cdot 0.010} = 38.4 \cdot 10^{6} \ \rm{ Pa}\). This shear stress works clockwise on a positive \(x\)-plane and anticlockwise on a negative \(x\)-plane (corresponding of the top plane of the shown specimen).
The stress at the bottom plane of the shown specimen can be found by rotating the right plane \(-\cfrac{1}{4}\pi \ \rm{ rad}\):
\(\sigma_{\bar x \bar x} = 102.4 \sin \left(-\cfrac{1}{4}\pi\right)^2 + 2 \cdot -38.4 \sin\left(-\cfrac{1}{4}\pi\right) \cos \left( -\cfrac{1}{4}\pi \right)^2= 89.6 \ \rm{ MPa} \)
\(\tau_{\bar x \bar y} = 102.4 \sin \left( -\cfrac{1}{4}\pi\right) \cos \left(-\cfrac{1}{4}\pi\right) -38.4 \cos \left(-\cfrac{1}{4}\pi\right)^2 +38.4 \sin \left(-\cfrac{1}{4}\pi \right)^2= -51.2 \ \rm{ MPa}\)
This can also be one using Mohr’s circle:
This results in:
The principal stresses can be found using:
\(\sigma_1 = \cfrac{102.4}{2}+\sqrt{\left(\cfrac{102.4}{2}\right)^2+38.4^2} = 115.2 \ \rm{ MPa} \)
\(\sigma_2 = \cfrac{102.4}{2}-\sqrt{\left(\cfrac{102.4}{2}\right)^2+38.4^2} = -12.8 \ \rm{ MPa} \)
Now the Von Mises failure criterion can be evaluated: \(f_y > \sqrt{\cfrac{1}{2} \left(\left(115.2+12.8\right)^2+\left(-12.8-0\right)^2+\left(0-115.2\right)^2\right)} = 12\sqrt{91} \ \rm{ MPa} \approx 122 \ \rm{ MPa}\) or \(f_y > \sqrt{102.4^2+3\cdot \left(38.4\right)^2} = 12\sqrt{91} \ \rm{ MPa} \approx 122 \ \rm{ MPa}\) ​