Lesson October 14th

# Matplotlib compatibility patch for Pyodide
import matplotlib
if not hasattr(matplotlib.RcParams, "_get"):
    matplotlib.RcParams._get = dict.get

Lesson October 14th#

During today’s lesson it’s demonstrated how you to use the displacement method.

Demonstration extension#

Given a structure as shown below:

../../_images/structure25.svg

Fig. 68 Structure#

For the displacement method, it’s needed to choose one or multiple degrees of freedom which describe the displacement of the full structure. Then, using equilibrium, this displacement can be solved for. In this case, that can be the horizontal and vertical displacement of \(\text{S}\). A positive displacement is arbitrarily chosen for both of them:

../../_images/displaced4.svg

Fig. 69 Displaced structure with assumed \(u_\text{B,h}\) and \(u_\text{b,v}\)#

This leads to extension of the elements:

  • \(\Delta L_{\text{AS}} = + u_\text{S,h}\)

  • \(\Delta L_{\text{SB}} = - u_\text{S,h}\)

And for element \(\text{SC}\) in detail:

../../_images/displaced_SC.svg

Fig. 70 Displaced \(\text{SC}\)#

  • \(\Delta L_{\text{SC}} = - \frac{4}{5} u_\text{S,v} - \frac{3}{5} u_\text{S,h}\)

Applying the constitutive and kinematic relation \( N = EA \cfrac{\Delta L}{L}\) gives:

  • \(N_{\text{AS}} = 1000 u_\text{S,h}\)

  • \(N_{\text{SB}} = - 2500 u_\text{S,h}\)

  • \(N_{\text{SC}} = - 800 u_\text{S,h} - 600 u_\text{S,v} \)

Now, the equilibrium of node \(\text{S}\) can be analysed:

../../_images/equilibrium_S.svg

Fig. 71 Free-body-diagram node \(\text{S}\)#

  • \(\Sigma F_\text{h}^\text{S} = 0 \to -N_\text{AS} + N_\text{SB} + \frac{3}{5} N_\text{SC} = 0\)

  • \(\Sigma F_\text{v}^\text{S} = 0 \to 40 + \frac{4}{5} N_\text{SC} = 0\)

This gives:

  • \(u_\text{S,h} = -\cfrac{3}{350} \text{ m} \approx -8.57 \text{ mm}\)

  • \(u_\text{S,v} = \cfrac{193}{2800} \text{ m} \approx 68.9 \text{ mm}\)

../../_images/displaced_sol.svg

Fig. 72 Final displaced structure#

Evaluating our previous expressions for the nodal forces gives:

  • \(N_{\text{AS}} \approx -8.57 \text{ kN}\)

  • \(N_{\text{SB}} \approx 21.4 \text{ kN}\)

  • \(N_{\text{SC}} = -50 \text{ kN} \)

Demonstration bending#

Given a structure as shown below:

../../_images/structure26.svg

Fig. 73 Structure#

Again, it’s needed to choose one or multiple degrees of freedom which describe the displacement of the full structure. In this case, that can be the rotation of \(\text{D}\). A positive displacement is arbitrarily chosen:

../../_images/displaced_2.svg

Fig. 74 Displaced structure with assumed \(\varphi_\text{D}\)#

As the nodes will not displace, each element can be analysed using forget-me-nots. The directions of the bending moments are arbitrarily chosen:

../../_images/elem_AD.svg

Fig. 75 Isolated element \(\text{AD}\)#

The rotation \(\varphi\) can be calculated using forget-me-nots as: \(\varphi_\text{D} = \cfrac{5M_\text{D}^\text{AD}}{3 EI} + \cfrac{ 15 \cdot 5}{6 EI}\) This can be rewritten as \(M_\text{D}^\text{AD} = 72000 \varphi_\text{D} - 7.5 \)

Similarly, for the other elements:

../../_images/DB.svg

Fig. 76 Isolated element \(\text{DB}\)#

\(M_\text{D}^\text{DB} = 180000 \varphi_\text{D} - 6 \)

../../_images/DC.svg

Fig. 77 Isolated element \(\text{DC}\)#

\(M_\text{D}^\text{DC} = -72000 \varphi_\text{D}\)

Now, the equilibrium of node \(\text{D}\) can be analysed:

../../_images/FBD_S.svg

Fig. 78 Free-body-diagram node \(\text{D}\) only showing bending moments#

\(\Sigma T = 0 \to -M_\text{D}^\text{AD} + M_\text{D}^\text{DB} + M_\text{D}^\text{DC} = 0\)

This gives \(\varphi = \cfrac{5}{9EI} = \cfrac{1}{216000} = 4.63 \cdot 10^{-6} \text{ rad}\)

Evaluating our previous expressions for the moments gives:

  • \(M_\text{D}^{\text{AD}} = -\cfrac{43}{6} \approx -7.17 \text{ kNm}\)

  • \(M_\text{D}^{\text{DB}} = -\cfrac{41}{6} \approx -6.83 \text{ kNm}\)

  • \(M_\text{D}^{\text{DC}} = -\cfrac{1}{3} \approx - 0.333 \text{ kNm} \)

This gives the following M-line:

../../_images/M-line1.svg

Fig. 79 Moment distribution#