… for beam structures

Contents

… for beam structures#

The general concept of the force method is covered in chapter 2.1 while the force method for beam structures is treated in in chapter 2.2.1 - 2.2.4 and the more specific ‘hoekveranderingsvergelijkingen’ in chapter 3.1 of the book Mechanica, Statisch onbepaalde constructies en bezwijkanalyse (in Dutch) (Hartsuijker and Welleman, 2007). The examples of chapter 3.1 are treated in the force method for frames tructures.

The method of ‘hoekveranderingsvergelijkingen’ has the advantage that it’s very easy to calculate the required rotations using forget-me-nots. However, not for all structures forget-me-nots might be available.

We’ll cover the application to bending structures with the following example.

Example

../../_images/Example1.svg

Fig. 32 Example structure#

  1. Determine the degree of statical determinacy.

    Example

    For our example, we might be interested in the internal force distribution, so we need to evaluate the degree of internal statical determinacy.

    ../../_images/onbekenden.svg

    Fig. 33 There are 14 unknown forces.#

    ../../_images/vergelijkingen.svg

    Fig. 34 There are 13 equilibrium equations#

    So this structure is 1st order internally statically indeterminant.

  2. Transform the structure in a statical determinant system by releasing releasing a support, splitting the structure at a two-force member or adding hinges: add unknown statically indeterminate forces and displacement constraints for each of the support you released and hinges you added. Be aware that you don’t transform the structure in a (partial) mechanism!

    Example

    There are many options here, of which the most obvious ones a few are shown below:

    ../../_images/optie2.svg
    ../../_images/optie3.svg

    This option is not very convenient as there are no forget-me-nots to get the displacement at \(\rm{B}\) for these loads

    ../../_images/optie4.svg
    ../../_images/optie1.svg

    If only hinges are added, we call this approach ‘hoekveranderingsvergelijkingen’ or ‘gaapvergelijkingen’

    The last option is chosen.

  3. Solve for the displacement in terms of the unknown indeterminate forces as you would normally do for a statically determinate structure.

    Example

    We’ve chosen the following statically determinate structure with displacement constraint \(\varphi_{\rm{B}}^{\rm{AB}} \left( M_{\rm{B}} \right) = \varphi_{\rm{B}}^{\rm{BC}} \left( M_{\rm{B}} \right) \):

    ../../_images/SB-systeem.svg

    Fig. 35 The statically determinate structure with displacement constraint#

    Using the forget-me-nots, the rotations can be directly be evaluated without evaluating internal forces:

    • \(\varphi_{\rm{B}}^{\rm{AB}} \left( M_{\rm{B}} \right) = \cfrac{4M_{\rm{B}}}{3EI} + \cfrac{200}{3EI}\)

    • \(\varphi_{\rm{B}}^{\rm{BC}} \left( M_{\rm{B}} \right) = -\cfrac{2M_{\rm{B}}}{3EI}\)

  4. Use your displacement constraints to solve for the statically indeterminate forces

    Example

    \[\begin{split} \begin{align*} \varphi_{\rm{B}}^{\rm{AB}} \left( M_{\rm{B}} \right) &= \varphi_{\rm{B}}^{\rm{BC}} \left( M_{\rm{B}} \right) \\ \cfrac{4M_{\rm{B}}}{3EI} + \cfrac{200}{3EI} &= -\cfrac{2M_{\rm{B}}}{3EI} \\ M_{\rm{B}} &= -20 \ \rm{kNm} \end{align*} \end{split}\]

Exercises#

  • Exercises 2.1 - 2.14, 2.23 and 2.25 in chapter 2.3 of the book Mechanica, Statisch onbepaalde constructies en bezwijkanalyse (in Dutch) (Hartsuijker and Welleman, 2007).

  • Exercises 3.1 - 3.10, 3.16 - 3.21 in chapter 3.4 of the book Mechanica, Statisch onbepaalde constructies en bezwijkanalyse (in Dutch) (Hartsuijker and Welleman, 2007).

Answers are available on this website for chapter 2 and here for chapter 3.