… for torsion

… for torsion#

The differential equation for equilibrium relations for bending is based on the infinitesimal small loaded torsional bar:

../../_images/deltax.svg

Fig. 18 Free body diagram of an infinitesimal small loaded torsional bar#

Equilibrium of moments around the longitudinal axis results in the following differential equation:

\[\begin{split} \begin{align*} \sum T_{\rm{element}} &= 0 \\ - M_{\rm{t}} + q_{\rm{M}_{\rm{t}}} \cdot \Delta x + M_{\rm{t}} + \Delta M_{\rm{t}} &= 0 \\ q_{\rm{M}_{\rm{t}}} \cdot \Delta x + \Delta M_{\rm{t}} &= 0 \\ \mathop {\lim }\limits_{\Delta x \to 0 } \left( \cfrac{\Delta M_{\rm{t}}}{\Delta x} \right) &= \mathop {\lim }\limits_{\Delta x \to 0 } \left( - q_{\rm{M}_{\rm{t}}} \right) \\ \cfrac{dM_{\rm{t}}}{dx} &= - q_{\rm{M}_{\rm{t}}} \end{align*} \end{split}\]