Stress-Strain relations

Stress-Strain relations#

Poisson’s ratio \(\nu\) relates strains with stresses in perpendicular directions.

The complete stress strain relation in 3D is defined as:

\[\begin{split}\begin{bmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \epsilon_{zz} \\ 2\epsilon_{xy} \\ 2\epsilon_{yz} \\ 2\epsilon_{zx} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+\nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+\nu) \\ \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{yz} \\ \sigma_{zx} \end{bmatrix}\end{split}\]

This is treated in chapter 4 of the lecture notes Introduction to Continuum Mechanics (Hartsuijker and Welleman, 2007).

Instructions from lecture#

This topic is presented in Dutch in a lecture available from 0:15:50 to 1:24:00 here.

Exercises#

Problems 1-3 in chapter 5 of the lecture notes Introduction to Continuum Mechanics (Hartsuijker and Welleman, 2007). Instead of applying the circle of Mohr, apply the transformulation formulas. Answers are available in chapter 5 of the lecture notes.