Lesson November 21th#
During today’s lesson you’ll work on a complex exercise on the topic of the Transforming tensors. Please ask your questions regarding the homework as well!
Exercise Transforming tensors#
Given is the following structure and cross-section:
Find the relevant cross-sectional properties.
Find the normal and shear stresses just below \(\rm{G}\), in \(\rm{H}\), in \(\rm{I}\) and just right of \(\rm{C}\) in cross-section \(\rm{A}\).
Find the principal values of the stresses in the points just below \(\rm{G}\), in \(\rm{H}\), in \(\rm{I}\) and just right of \(\rm{C}\) in cross-section \(\rm{A}\).
Solution assignment 1
Normal force centre is given by:
\(A \approx 17500 \,\rm{ mm}^2\)
\(I_{zz} \approx 655 \cdot 10^6 \, \rm{ mm}^4\)
Solution assignment 2
\(\sigma_{\rm{just} \,\rm{below} \,\rm{G}} = +6.73 \,\rm{ MPa}\)
\(\tau_{\rm{just} \,\rm{below} \,\rm{G}} = +0.164 \,\rm{ MPa}\)
\(\sigma_{\rm{H}} = +6.73 \,\rm{ MPa}\)
\(\tau_{\rm{H}} = 0 \,\rm{ MPa}\)
\(\sigma_{\rm{I}} = -2 \,\rm{ MPa}\)
\(\tau_{\rm{I}} = +0.35 \,\rm{ MPa}\)
\(\sigma_{\rm{just} \,\rm{right} \,\rm{of} \,\rm{C}} = -8.53 \,\rm{ MPa}\)
\(\tau_{\rm{just} \,\rm{right} \,\rm{of} \,\rm{C}} = -0.12 \,\rm{ MPa}\)
Solution assignment 3
\(\sigma_{\rm{1,} \,\rm{just} \,\rm{below} \,\rm{G}} = +6.73 \,\rm{ MPa}\)
\(\sigma_{\rm{2,} \,\rm{just} \,\rm{below} \,\rm{G}} = -0.0040 \,\rm{ MPa}\)
\(\sigma_{\rm{1,} \,\rm{H}} = +6.73 \,\rm{ MPa}\)
\(\sigma_{\rm{2,} \,\rm{H}} = 0 \,\rm{ MPa}\)
\(\sigma_{\rm{1,} \,\rm{I}} = 0.059 \,\rm{ MPa}\)
\(\sigma_{\rm{2,} \,\rm{I}} = -2.06 \,\rm{ MPa}\)
\(\sigma_{\rm{1,} \,\rm{just} \,\rm{right} \,\rm{of} \,\rm{C}} = 0.0018 \,\rm{ MPa}\)
\(\sigma_{\rm{2,} \,\rm{just} \,\rm{right} \,\rm{of} \,\rm{C}} = -8.5 \,\rm{ MPa}\)
Exercise stress tensor#
Given is the following structure and cross-section:
Fig. 193 Structure, with properties \(L = 4 \,\rm{ }\), \(F = 200 \,\rm{ kN}\), \(q = 20 \,\rm{ kN/m}\)#
Fig. 194 Cross-section, with properties: \(E = 30 \,\rm{ GPa}\), \(\nu = 0.2 \,\rm{(-)}\), \(b = 200 \,\rm{ mm}\), \(h = 600 \,\rm{ mm}\).#
Find the internal forces in cross-section \(\rm{A}\).
Find the stresses in point \(\rm{P}\) in cross-section \(\rm{A}\).
Find the stress tensor in the \(xyz\)-coordinates in point \(\rm{P}\) in cross-section \(\rm{A}\).
Find the isotropic and deviatoric components.
Solution assignment 1
\(N_{\rm{A}} = 200 \, \rm{ kN}\)
\(V_{\rm{A}} = 80 \, \rm{ kN}\)
\(M_{\rm{A}} = -160 \, \rm{ kNm}\)
Solution assignment 2
\(\sigma_{yy} = \sigma_{xy} = \sigma_{yz} = \sigma_{zz} = 0 \, \rm{ MPa}\)
\(\sigma_{xx} = -5 \, \rm{ MPa}\)
\(\sigma_{xz} = 0.75 \, \rm{ MPa}\)
Solution assignment 3
Solution assignment 4