Lesson Monday September 22th#

During today’s lesson it’s demonstrated how you to use the force method for statically indeterminate problems which only involve extension

Demonstration#

Given a structure as shown below:

../../_images/structure12.svg

Fig. 34 Structure#

We can find the normal force distribution using the force method. Therefore, we need to know the degree of statically determinacy. The free-body-diagram of the full structure is as follows:

../../_images/FBD.svg

Fig. 35 Free-body-diagram full structure#

There are 4 unknown support reactions. With only 3 equilibrium equations for this self-contained structure, it can be concluded that this structure is a first-order statically determinant structure.

To apply the force method we need to replace a part of the structure by a statically indeterminate force, which turns the structure into a statically determinate structure. To solve the statically indeterminate structure we need to include a compatibility condition.

Define statically determinate structure with compatibility condition#

In this structure, we choose to replace the right support with a rolling hinged support. This leads to a horizontal statically indeterminate force \(B_\rm{v}\) with the compatibility conditions \(u_{h,\rm{B}} = 0\):

../../_images/SD.svg

Fig. 36 Statically determinate structure with compatibility condition#

Solve displacements statically determinate structure in terms of statically indeterminate force#

The force distribution and displacements in this statically determinate structure is now solved for in terms of \(B_\rm{h}\).

Support reactions#

First, the support reactions are solved for

../../_images/FBD.svg

Fig. 37 Free-body-diagram full structure#

\[\begin{split} \begin{array}{c} \sum {{{\left. T \right|}_{\rm{A}}} = 0} \to {B_{\rm{v}}} = 5 \ {\rm{ kN}}\\ \sum {{F_{\rm{v}}} = 0} \to {A_{\rm{v}}} = 15 \ {\rm{ kN}}\\ \sum {{F_{\rm{h}}} = 0} \to {A_{\rm{h}}} = {B_{\rm{h}}} \end{array} \end{split}\]

Leading to:

../../_images/FBD_sol.svg

Fig. 38 Free-body-diagram full structure with resulting support reactions#

Section forces#

The section forces are solved for, starting with the forces in \(\rm{BE}\) and \(\rm{BD}\):

../../_images/FBD_B.svg

Fig. 39 Free-body-diagram joint \(\rm{B}\)#

\[\begin{split} \begin{array}{c} \sum {{F_{\rm{v}}} = 0} \to {N_{{\rm{BE}}}} = -6.25 \ {\rm{ kN}}\\ \sum {{F_{\rm{h}}} = 0} \to {N_{{\rm{BD}}}} = 3.75 - {B_{\rm{h}}} \end{array} \end{split}\]
../../_images/FBD_B_sol.svg

Fig. 40 Free-body-diagram joint \(\rm{B}\) with resulting sections forces#

Now, let’s continue with a section through beams \(\rm{AD}\), \(\rm{CD}\) and \(\rm{CE}\):

../../_images/FBD_AC1.svg

Fig. 41 Free-body-diagram part \(\rm{AC}\)#

\[\begin{split} \begin{array}{c} \sum {{F_{\rm{v}}} = 0} \to {N_{{\rm{CD}}}} = - 6.25 \ {\rm{ kN}}\\ {\sum {\left. T \right|} _{\rm{D}}} = 0 \to {N_{CE}} = - 7.5 \ {\rm{ kN}}\\ \sum {{F_{\rm{h}}} = 0} \to {N_{{\rm{AD}}}} = 11.25 - {B_{\rm{h}}} \end{array} \end{split}\]
../../_images/FBD_AC_sol.svg

Fig. 42 Free-body-diagram part \(\rm{AC}\) with resulting section forces#

Thirdly, let’s continue with the joint \(\rm{D}\):

../../_images/FBD_D.svg

Fig. 43 Free-body-diagram joint \(\rm{D}\)#

\[\sum {{F_{\rm{v}}} = 0} \to {N_{{\rm{DE}}}} = 6.25 \ {\rm{ kN}}\]
../../_images/FBD_D_sol.svg

Fig. 44 Free-body-diagram joint \(\rm{D}\)#

And finally joint \(\rm{C}\):

../../_images/FBD_C1.svg

Fig. 45 Free-body-diagram joint \(\rm{D}\)#

\[\sum {{F_{\rm{v}}} = 0} \to {N_{{\rm{AC}}}} = - 18.75 \ {\rm{ kN}}\]
../../_images/FBD_C_sol.svg

Fig. 46 Free-body-diagram joint \(\rm{D}\)#

Shortening/lengthening of elements#

Now, for each element the shortening / lengthening can be calculated:

\[\begin{split}\Delta L = \frac{{NL}}{{EA}} \to \begin{array}{c} {\Delta {L_{{\rm{AC}}}} = - 0.025 \ {\rm{ m}}}\\ {\Delta {L_{{\rm{CE}}}} = - 0.012 \ {\rm{ m}}}\\ {\Delta {L_{\rm{BE}}} = \cfrac{1}{{120}} \approx - 0.00833 \ {\rm{ m}}}\\ {\Delta {L_{{\rm{CD}}}} = \cfrac{1}{{120}} \approx - 0.00833 \ {\rm{ m}}}\\ {\Delta {L_{{\rm{DE}}}} = \cfrac{1}{{120}} \approx 0.00833 \ {\rm{ m}}}\\ {\Delta {L_{{\rm{AD}}}} = 0.018 - \cfrac{1}{{625}}{B_{\rm{h}}} = 0.018 - 0.0016{B_{\rm{h}}}{\rm{ m}}}\\ {\Delta {L_{{\rm{DB}}}} = 0.006 - 0.0016{B_{\rm{h}}}{\rm{ m}}} \end{array}\end{split}\]

Displacement structure due to \(20 \rm{ kN}\)#

For now we’ll ignore the shortening/lengethening due to \(B_\rm{h}\):

../../_images/elong.svg

Fig. 47 Shortening/lengthening of elements#

This gives the following Williot-diagram with a fixed \(\rm{AC}\):

../../_images/williot3.svg

Fig. 48 Williot diagram with fixed \(\rm{AC}\)#

Leading to the following displacements if \(\rm{AC}\) doesn’t rotate:

joint

Displacement due to \(20 \ \rm{ kN}\) with fixed \(\rm{AC}\) in horizontal direction → \(\left( \rm{mm}\right)\)

Displacement due to \(20 \ \rm{ kN}\) with fixed \(\rm{AC}\) = in vertical direction ↓ \(\left( \rm{mm}\right)\)

\(\rm{A}\)

\(0\)

\(0\)

\(\rm{C}\)

\(-15\)

\(20\)

\(\rm{D}\)

\(18\)

\(-15.1667\)

\(\rm{E}\)

\(-27\)

\(-59.333\)

\(\rm{B}\)

\(24\)

\(-108\)

\(\rm{B}\) shouldn’t move vertically, so this structure has to be rotated back with \(\theta \approx \cfrac{{108}}{{12000}} = 9 \cdot {10^{ - 3}}{\rm{ rad}}\) ⟳, leading to:

joint

Displacement due to \(\theta\) in horizontal direction → \(\left( \rm{mm}\right)\)

Displacement due to \(\theta\) in vertical direction ↓ \(\left( \rm{mm}\right)\)

\(\rm{A}\)

\(0\)

\(0\)

\(\rm{C}\)

\(36\)

\(27\)

\(\rm{D}\)

\(0\)

\(54\)

\(\rm{E}\)

\(36\)

\(81\)

\(\rm{B}\)

\(0\)

\(108\)

Resulting in total displacements of:

joint

Displacement due to in horizontal direction → \(\left( \rm{mm}\right)\)

Displacement in vertical direction ↓ \(\left( \rm{mm}\right)\)

\(\rm{A}\)

\(0\)

\(0\)

\(\rm{C}\)

\(21\)

\(47\)

\(\rm{D}\)

\(18\)

\(38.833\)

\(\rm{E}\)

\(9\)

\(21.67\)

\(\rm{B}\)

\(24\)

\(0\)

../../_images/displaced1.svg

Fig. 49 Displaced structure#

Displacement structure due to \(B_\rm{h}\)#

For the displacement due to \(B_\rm{h}\) in \(\rm{kN}\), the following Williot-diagram with a fixed \(\rm{AD}\) can be drawn:

../../_images/williot21.svg

Fig. 50 Williot diagram with fixed \(\rm{AD}\)#

Leading to the following displacements if \(\rm{AD}\) doesn’t rotate:

joint

Displacement due to \(B_\rm{h}\) in horizontal direction →

Displacement due to \(B_\rm{h}\) in vertical direction ↓

\(\rm{A}\)

\(0\)

\(0\)

\(\rm{C}\)

\(-0.8{B_{\rm{h}}}\)

\(-0.6{B_{\rm{h}}}\)

\(\rm{D}\)

\(-1.6{B_{\rm{h}}}\)

\(0\)

\(\rm{E}\)

\(-0.8{B_{\rm{h}}}\)

\(0.6{B_{\rm{h}}}\)

\(\rm{B}\)

\(-3.2{B_{\rm{h}}}\)

\(2.4{B_{\rm{h}}}\)

Again, \(\rm{B}\) Shouldn’t move vertically, so this structure has to be rotated back with \(\theta = \cfrac{2.4{B_{\rm{h}}}}{{12000}} = 0.0002{B_{\rm{h}}} \ {\rm{ rad}}\) ⟲, leading to:

joint

Displacement due to \(\theta\) in horizontal direction → \(\left( \rm{mm}\right)\)

Displacement due to \(\theta\) in vertical direction ↓ \(\left( \rm{mm}\right)\)

\(\rm{A}\)

\(0\)

\(0\)

\(\rm{C}\)

\(-0.8 B_\rm{h}\)

\(-0.6 B_\rm{h}\)

\(\rm{D}\)

\(0\)

\(-1.2B_\rm{h}\)

\(\rm{E}\)

\(-0.8 B_\rm{h}\)

\(-1.8B_\rm{h}\)

\(\rm{B}\)

\(0\)

\(-2.4 B_\rm{h}\)

Resulting in total displacements of:

joint

Displacement due to in horizontal direction → \(\left( \rm{mm}\right)\)

Displacement in vertical direction ↓ \(\left( \rm{mm}\right)\)

\(\rm{A}\)

\(0\)

\(0\)

\(\rm{C}\)

\(-1.6B_\rm{h}\)

\(-1.2B_\rm{h}\)

\(\rm{D}\)

\(-1.6{B_{\rm{h}}}\)

\(-1.2B_\rm{h}\)

\(\rm{E}\)

\(-1.6B_\rm{h}\)

\(-1.2B_\rm{h}\)

\(\rm{B}\)

\(-3.2B_\rm{h}\)

\(0\)

../../_images/displaced2.svg

Fig. 51 Displaced structure#

Solve statically indeterminate structure with compatibility conditions#

Now, we can fill in the compatibility conditions:

\[{u_{{\rm{B,h}}}} = 0 \to 0.024 - 0.0032{B_{\rm{h}}} = 0 \to {B_{\rm{h}}} = 7.5 \ {\rm{ kN}}\]

Section forces statically indeterminate structure#

The section forces can be calculated by filling in the resulting \(B_\rm{h}\) in our previous expressions:

Element

Normal force \(\rm{kN}\)

\(\rm{AC}\)

-18.75

\(\rm{CE}\)

-7.5

\(\rm{BE}\)

-6.25

\(\rm{CD}\)

-6.25

\(\rm{DE}\)

6.25

\(\rm{AD}\)

3.75

\(\rm{DB}\)

-3.75

../../_images/N-line.svg

Fig. 52 Normal force distribution#

Displacements statically indeterminate structure#

Now, the displacements can be found as well by filling in the resulting \(B_\rm{h}\) in our previous expressions:

joint

Displacement in horizontal direction → \(\left( \rm{mm}\right)\)

Displacement in vertical direction ↓ \(\left( \rm{mm}\right)\)

\(\rm{A}\)

\(0\)

\(0\)

\(\rm{C}\)

\(9\)

\(38\)

\(\rm{D}\)

\(6\)

\(29.833\)

\(\rm{E}\)

\(-3\)

\(12.66\)

\(\rm{B}\)

\(0\)

\(0\)

../../_images/displaced3.svg

Fig. 53 Displaced structure#